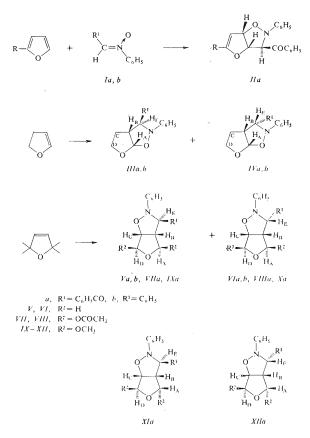
1,3-DIPOLAR CYCLOADDITION OF C-BENZOYL-N-PHENYLNITRONE WITH DIHYDROFURAN DERIVATIVES. INVESTIGATION OF *endo-exo* STEREOSELECTIVITY*

Lubor Fišera", Miloslava Dandárová", Jaroslav Kováč", Anton Gáplovský^b, Juraj Patuš" and Igor Goljer^e

 ^a Department of Organic Chemistry, Slovak Institute of Technology, 812 37 Bratislava,
^b Institute of Chemistry, 816 00 Bratislava and
^c Laboratory of NMR Spectroscopy, Slovak Institute of Technology, 812 37 Bratislava

Received September 20th, 1980

C-Benzoyl-N-phenylnitrone (*Ia*) reacts with dihydrofuran derivatives (2,3-dihydro- and 2,5-dihydrofuran, 2,5-dimethoxy- and 2,5-diacetoxy-2,5-dihydrofuran) via 1,3-dipolar cycloaddition to give diastereoisomeric pair of exo- and endo-cycloadducts. The endo-exo stereoselectivity of the reaction is discussed. Cycloaddition of C,N-diphenylnitrone (*Ib*) with 2,3-dihydrofuran is also described. The cycloaddition kinetics have been studied with the nitrone *Ia* and nonsubstituted dihydrofurans.


1,3-Dipolar cycloaddition of nitrones *I* with olefins produces regioisomeric isoxazolidines due to two possible orientations of the reactants¹. Each orientation can give two diastereoisomeric isoxazolidines on the basis of two possible *endo*- and *exo*-arrangements of the transition states^{2,3}. In previous reports⁴⁻⁷ we dealt with 1,3-dipolar cycloaddition of C-benzoyl-N-phenylnitrone (*Ia*) with furan derivatives; *Ia* reacted with high degree of regioselectivity and stereospecificity to give the *endo*--monoadduct *IIa* only (Scheme 1, the indexes *a* and *b* denote R¹ = C₆H₅CO and C₆H₅, respectively; for *V* and *VI* it is R² = H; for *VII* and *VIII* it is R² = OCCOCH₃; for *IX*-*XII* it is R² = OCH₃). The present paper deals with 1,3-dipolar cycloadditions of nitrones *Ia* and *Ib* with 2,3- and 2,5-dihydrofuran, 2,5-dimethoxyand 2,5-diacetoxy-2,5-dihydrofuran. In the case of 2,3- and 2,5-dihydrofurans the cycloaddition kinetics was also followed.

Physical and analytical data of the newly prepared derivatives are given in Table I. Elemental analysis, mass spectra, UV and IR spectra indicate formation of the cycloadducts. Their stereochemical structure was determined from ¹H NMR and

^{*} Part CLXIV in the series Furan Derivatives; Part CLXIII: This Journal 47, 45 (1982). Part VI in the series 1,3-Dipolar Cycloadditions of Heterocycles; Part V: This Journal 46, 1504 (1981).

Fišera, Dandárová, Kováč, Gáplovský, Patuš, Goljer:

¹³C NMR spectra, chemical shifts and coupling constants. The chemical shifts and coupling constants of the monoadducts prepared as well as denotation of the protons in tetrahydrofurans are given in Table II and Scheme 1. The following results were obtained.

2,3-Dihydrofuran: The ¹H NMR spectrum of the compound IVa shows a distinct doublet with high value δ 5.92 ppm and a therewith coupled multiplet at δ 3.65 ppm, which indicates formation of the head-to-head regioisomer. Signals of the bridge protons in the mono-adduct IIa (head-to-tail) were found at almost the same values δ 5.91 and 5.57 ppm. In case of identical regioisomerism of the isolated adduct with the monoadduct IIa the both bridge protons had to be found at lower δ values due to loss of shielding of double bond. The found very different values of chemical shifts of the tetrahydrofuran bridge protons δH_B at 3.65 ppm and δH_A at 5.92 ppm

Compound	Formula	M.p., °C	IR	UV λ _{max}	Calcu	ated/F	ound
	(mol. mass)	(yield %)	v(CO) cm ⁻¹	$(\log \varepsilon)$	% C	% Н	% N
IVa	C ₁₈ H ₁₇ NO ₃ (295·3)	183—185 (51)	1 698	249 (4·30)	73∙20 73∙43	5∙80 5∙55	4∙74 4∙85
IIIa	C ₁₈ H ₁₇ NO ₃ (295·3)	151—153 (47)	1 693	245 (4·42)	73·20 73·16	5∙80 5∙61	4·74 4·73
IIIb	C ₁₇ H ₁₇ NO ₂ (267·3)	71-72 (18)	1 698	245 (3·92)	76∙38 76∙52	6∙41 6∙40	5·24 5·40
IVb	C ₁₇ H ₁₇ NO ₂ (267·3)	103 105 (71)	1 698	247 (3·79)	76∙38 76∙50	6∙41 6∙30	5∙24 5∙43
IVa	C ₁₈ H ₁₇ NO ₃ (295·3)	98-100 (17)	1 694	248 (4·42)	73·20 72·95	5∙80 4∙79	4·74 4·85
VIa	C ₁₈ H ₁₇ NO ₃ (295·3)	142—144 (57)	1 694	246 (4·42)	73·20 73·19	5∙80 5∙62	4·74 4·71
VIIa	C ₂₂ H ₂₁ NO ₇ (411·4)	171—172 (42)	1 692 1 654	242 (4·29)	64·22 64·36	5·15 5·06	3∙40 3∙72
VIIIa	C ₂₂ H ₂₁ NO ₇ (411·4)	162—164 (18)	1 698 1 654	247 (4·28)	64·22 64·32	5·15 5·05	3∙40 3∙65
IXa	C ₂₀ H ₂₁ NO ₅ (355·4)	138—140 (17)	1 697	248 (4·28)	67∙59 67∙52	5∙96 5∙91	3∙94 4∙05
Xa	C ₂₀ H ₂₁ NO ₅ (355·4)	110-112 (16)	1 697	245 (4·35)	67·59 67·64	5∙96 6∙08	3·94 4·11
XIa	C ₂₀ H ₂₁ NO ₅ (355·4)	106—107 (48)	1 697	245 (4·35)	67∙59 67∙51	5∙96 5∙68	3∙94 4∙07

TABLE I Physical properties and elemental analyses of the compounds prepared

(the high value of chemical shift δH_A is caused by shielding due to two heteroatoms of oxygen) indicate, according to expectation, the opposite regioisomerism of the 1,3-dipolar cycloaddition of *Ia* to 2,3-dihydrofuran as compared with furan. In a previous paper⁷ we determined values of the frontier orbitals of nitrone *Ia* ($\varepsilon_{HOMO} =$ $= -849.05 \text{ kJ mol}^{-1}$ and $\varepsilon_{LUMO} = -84.90 \text{ kJ. mol}^{-1}$) which, together with the values by Houk and Caramella⁸ for 2,3-dihydrofuran ($\varepsilon_{HOMO} = -820.11 \text{ kJ mol}^{-1}$

Com- pound	H_A (J_{AB})	H _B (J _{BC})	H _C (J _{CD})	Η _D	H _E (J _{BE})	Aromatic ⁴ (m)
IIIa	6·01 d (5·5)	3·75 m	1.95−2.33 m	3·38-4·01 m	5·03 d (2·0)	7.038.09
IIIb	6·00 d (4·8)	3·87 m	1·95-2·33 m	3·774·00 m	4·48 d (3·1)	6.85-7.45
IVa	5·92 d (5·5)	3·50−4·41 m	1·62-1·92 m	3.50-4.41 m	4·94 d (7·7)	7.00-7.95
IVb	5·89 d (5·6)	3·27—3·67 m	1·47-1·85 m	3·86-4·25 m	4·50 d (7·9)	6.81-7.2
Va	2·23− −4·18 m	3·61 m (6·0)	5·02 d,d (4·1)	2·23-4·18 m	4·77 d (4·3)	6.91-8.1
VIa	3·48- -4·22 (5·5)	_	4·90-5·15 m (1·5 and 4·2)	3·48-4·22 m	5·14 d (8·2)	6-967-9
VIIa	6·26 d (1·5)	3·90 m (6·9)	4·99 d (0·0)	6·45 s	5·57 d (1·9)	6.95-8.0
VIIIa	6·25 d (1·0)	3·80 m (6·5)	5·02 d (0·0)	6·54 s	5·08 d (7·5)	7.01-8.1
IXa	5·28 s (0·0)	3·75 m (6·5)	4·95 d (0·0)	5·10 s	4·88 d (2·5)	6.96-8.1
Xa	5·19 s (0·0)	3·71−3·86 m (6·6)	4·92 d (0·0)	5·12 s	5·16 d (5·5)	6.96-8.0
XIa	5·20 d (5·7)	3·653·87 m (7·5)	4·73 d (0·0)	5·08 s	5·75 d (2·5)	6.88-8.0

TABLE II Chemical shifts and coupling constants (δ , ppm, J, Hz)

^a VIa $J'_{DD} = 10.5$ Hz, VIIa CH₃ (1.98 and 2.03), VIIIa CH₃ (1.87 and 2.07), IXa CH₃ (3.15 and 3.42), Xa CH₃ (3.32 and 3.37), XIa CH₃ (3.32 and 3.47).

and $\varepsilon_{LUMO} = 231.56 \text{ kJ mol}^{-1}$), indicate that the given 1,3-dipolar cycloaddition is controlled (as in the case of furan) by the frontier orbital interaction LUMO (*Ia*)/ /HOMO(2,3-dihydrofuran). In contrast to furan the atomic orbital coefficients in HOMO(2,3-dihydrofuran) have the greatest values at B-carbon atom⁸, which results in formation of the opposite head-to-head regioisomer. The coupling constant $J_{AB} = 5.5 \text{ Hz}$ proves *cis*-stereospecificity⁴ of 1,3-dipolar cycloaddition of the nitrone *Ia*. The ¹H NMR spectrum contains still another doublet at δ 4.94 ppm with the coupling constant $J_{BE} = 7.7 \text{ Hz}$, which is also coupled with the multiplet H_B which was assigned to the isoxazolidine proton H_E.

The derivatives *IIIa* and *IVa* are rigid systems, which enabled determination of stereochemistry of the mono-adducts being formed by means of coupling constants⁹. The dihedral angles $H_B-C-C-H_E$ were determined from the Dreiding models within the limits $120-130^{\circ}$ and $5-15^{\circ}$ for *IIIa* and *IVa*, respectively, which corresponds to the calculated vicinal coupling constants $J_{BE} 2 \cdot 0 - 3 \cdot 0$ Hz or $7 \cdot 5 - 8 \cdot 5$ Hz from the Karplus equation¹⁰ $J_{vie} = k \cdot \cos^2 \varphi$, where φ means the dihedral angle, and k means a constant^{11,12}. On the basis of coupling constant $J_{BE} = 7 \cdot 7$ Hz of compound *IVa* we can assign this compound the structure of *exo*-diastereoisomer with *syn*-arrangement of the isoxazolidine proton H_E with respect to the bridge protons H_A and H_B .

Signals of the bridge protons H_A (6-01 ppm) and H_B (3.75 ppm) in the *endo*-diastercoisomer *IIIa* absorb at lower field than those in *IVa* due to their being shielded by benzoyl group assuming *syn*-arrangement with the mentioned protons in *IIIa*. The coupling constant J_{BE} of the doublet for the isoxazolidine proton H–E at δ 5.03 ppm $J_{BE} = 2.0$ Hz agrees well with the already mentioned coupling constant obtained from the Dreiding model by means of the Karplus equation for the *endo*diastereoisomer *IIIa*. The both monoadducts *IV* and *IIIa* are formed at a ratio 52 : 48 in favour of the *endo*-cycloadduct *IIIa*. The given ratio was obtained from ¹H NMR spectrum of the reaction mixture.

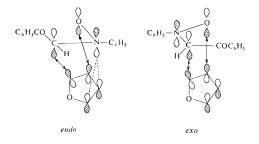
In contrast to furan derivatives⁴, 2,3-dihydrofuran reacted by 1,3-dipolar cycloaddition also with C,N-diphenylnitrone (*Ib*). The *exo*-cycloadduct *IVb* has *syn*-arrangement of the isoxazolidine proton H_E with the bridge tetrahydrofuran protons H_A and H_B , which follows from the values of the coupling constant $J_{BE} = 7.9$ Hz. According to expectation, substitution of phenyl for benzoyl group caused an upfield shift of the H_B and H_E protons signals as compared with monocycloadduct, H_B (3·27-3·67 ppm) and H_E (4·50 ppm). Their assignment was accomplished by decoupling of the signal with frequency at 273·3 Hz which corresponds to H_B resonance, whereafter the doublets at $\delta 5$ ·89 ppm (H_A) and 4·50 ppm (H_E) reduced to singlets, and the multiplet H_C was simplified.

In the ¹H NMR spectrum of the *endo*-cycloadduct *IIIb* there appear two doublets for the H_A proton at δ 6.00 ppm with coupling constant J_{AB} = 4.8 Hz and a doublet for the isoxazolidine proton H_E at δ 4.48 ppm with coupling constant J_{BE} = 3.1 Hz determining the *endo*-arrangement of the formed cycloadduct *IIIb*. Ratio of the *endo-exo* isomers is 22:78.

2,5-Dihydrofuran: As with symmetrically substituted 2,5-dihydrofuran derivatives no regioisomerism is possible, the problem of stereochemistry of the formed cycloadducts was simplified to that of configuration of the isoxazolidine proton $H_{\rm F}$. From the Dreiding models the following dihedral angles were estimated (the calculated values of coupling constants are given in brackets): H_A-C-C-H_B 15-25° $(J = 6.5 - 7.5 \text{ Hz}), H_{A'} - C - C - H_{B} 110 - 120^{\circ}, (J = 1.0 - 2.0 \text{ Hz}), H_{B} - C - C - H_{C} 5 - 10^{\circ}$ $(J = 8.0 - 8.5 \text{ Hz}), H_{B} - C - C - H_{E} = 5 - 15^{\circ} (J = 7.5 - 8.5 \text{ Hz}), \text{ and } H_{B} - C - C - H_{E},$ $120-130^{\circ}$ (J = 2.0-3.0 Hz). In the ¹H NMR spectrum of the compound VIa there is a doublet at δ 5.14 ppm (H_E) with coupling constant $J_{BE} = 8.2$ Hz. Decoupling experiment at the frequency 327.1 Hz which corresponds to resonance of the H_{D} , proton made it possible to analyze the multiplet of the H_{C} proton with the following coupling constants: $J_{BC} = 5.5 \text{ Hz}$, $J_{DD'} = 10.5 \text{ Hz}$, $J_{CD'} = 1.5 \text{ Hz}$, and $J_{CD} = 4.2$ Hz. In the ¹H NMR spectrum of the *endo*-cycloadducts Va there is a doublet at δ 4.77 ppm belonging to the isoxazolidine proton H_E and separated from the doublet for the H_c proton. The coupling constant $J_{BE} = 4.3$ Hz indicates that the adduct is endo-diastereoisomer. By decoupling of the signal at the frequency 288.4 Hz (H_B) the doublet (H_E) was reduced to singlet, and the doublet-doublet (H_c) was reduced into doublet with coupling constant $J_{CD} = 4.1$ Hz, $J_{CD'}$ being equal to zero. The coupling constants $J_{BC} = 6.0$ Hz (Va) and 5.5 Hz (VIa) confirm cis-stereospecificity of the 1,3-dipolar cycloaddition. The found ratio of endo- and exo-diastereoisomers is 44 : 56 without separation.

2,5-Diacetoxy-2,5-dihydrofuran: Analysis of ¹H NMR spectrum of the compound VIIa ($\mathbb{R}^2 = \text{OCOCH}_3$) can assign it the structure of endo-cycloadduct with cis-arrangement of acetoxyl groups and anti-arrangement of the isoxazolidine proton H_E with the bridge tetrahydrofuran protons H_B and H_C. The found coupling constants $J_{AB} = 1.5$ Hz ($\delta H_A = 6.26$ ppm), $J_{BC} = 6.9$ Hz ($\delta H_B = 3.90$ ppm and $\delta H_C = 4.99$ ppm), $J_{BE} = 1.9$ Hz ($\delta H_E = 5.57$ ppm) agree well with those from the Karplus equation. Signal of the proton H_D appears in the spectrum as a singlet at δ 6.45 ppm similar to the signals of CH₃COO groups at the value 1.98 and and 2.03 ppm.

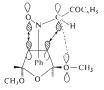
Signal of the isoxazolidine proton H_E of the compound VIIIa appears in the ¹H NMR spectrum as a doublet at $\delta 5.08$ ppm with the coupling constant $J_{BE} = 7.5$ Hz, which means that the isolated compound is a diastereoisomeric pair to VIIa, viz exo-cycloadduct. The cis-arrangement of acetoxyl groups is confirmed by character of splitting of signals of α -protons of tetrahydrofuran skeleton. Signal of the H_A proton is found in the spectrum as a doublet at $\delta 6.25$ ppm with small coupling constant $J_{AB} = 1.0$ Hz, and signal of the H_D protons appears as a singlet at $\delta 6.54$ ppm. Value of the coupling constant $J_{BE} = 6.5$ Hz is similar to that


of VIIa. Although we carried out the cycloaddition of Ia with 2,5-diacetoxy-2,5-dihydrofuran, which represented a 1:1 mixture of *cis*- and *trans*-isomers, we only isolated the cycloaddition products of the *cis*-derivative. The respective endo (VIIa) and exo (VIIIa) diastereoisomers are present in the reaction mixture before separation at a ratio 70:30.

2,5-Dimethoxy-2,5-dihydrofuran: We obtained the cycloadducts IXa, Xa, and XIa in the yields 17, 16, and 48%, respectively. The *trans*-arrangement of α -hydrogen atoms of tetrahydrofuran skeleton in the compound XIa is determined by the coup-

TABLE III Mass spectra	
Compound	m/z (rel. int.)
IIIa	295, M ⁺⁺ (9), 191 (18), 19 (100), 174 (5), 173 (23), 172 (7), 156 (5), 144 (17), 144 (17), 130 (16), 122 (14), 106 (5), 105 (44), 104 (17), 93 (5), 78 (6), 77 (50), 51 (20), 50 (5), 43 (5), 41 (8), 39 (7)
IVa	295, M ⁺⁺ (4), 249 (4), 191 (5), 190 (30), 174 (5), 173 (25), 172 (10), 162 (8), 156 (9), 145 (5), 144 (30), 143 (5), 130 (25), 122 (17), 120 (6), 117 (10), 115 (6), 106 (8), 105 (62), 104 (17), 93 (7), 91 (6), 81 (6), 78 (12), 77 (100), 76 (7), 74 (5), 65 (5), 52 (7), 51 (47), 50 (15), 43 (5), 41 (12), 39 (16)
VIa	295, M ⁺⁺ (9), 191 (12), 190 (100), 174 (9), 173 (18), 172 (7), 160 (4), 156 (4), 147 (7), 145 (6), 144 (25), 143 (6), 132 (7), 131 (6), 130 (34), 122 (18), 117 (7), 106 (9), 105 (53), 104 (37), 93 (8), 91 (6), 81 (6), 78 (12), 71 (5), 70 (7), 69 (8), 57 (15), 56 (11), 55 (15), 51 (37), 50 (10), 43 (18), 42 (10), 41 (37), 39 (18)
VIIo	411, M ⁺⁺ (6), 351 (4), 308 (6), 307 (6), 247 (5), 246 (24), 226 (8), 205 (4), 204 (21), 188 (19), 187 (19), 186 (20), 176 (19), 171 (6), 170 (10), 158 (9), 147 (8), 146 (50), 130 (19), 122 (10), 105 (100), 104 (15), 93 (6), 91 (4), 78 (16), 77 (70), 76 (5), 60 (24), 57 (9), 55 (7), 51 (21), 50 (6), 45 (24), 43 (89), 42 (6), 41 (10), 39 (8)
VIIIa	411, M ⁺⁺ (1), 351 (4), 306 (5), 291 (4), 248 (5), 246 (9), 204 (6), 188 (16), 187 (7), 186 (12), 170 (5), 158 (5), 146 (30), 130 (9), 122 (7), 106 (10), 105 (100), 104 (14), 93 (5), 78 (6), 77 (51), 74 (5), 50 (25), 59 (6), 57 (10), 56 (6), 55 (8), 51 (15), 45 (27), 43 (77), 42 (6), 41 (12), 39 (7)
Xla	355, M^{+} (21), 324 (4), 251 (20), 250 (95), 226 (6), 190 (23), 174 (4), 166 (11), 163 (9), 162 (62), 160 (9), 158 (11), 146 (7), 131 (7), 130 (46), 129 (8), 122 (17), 106 (10), 105 (69), 104 (69), 99 (53), 94 (6), 93 (16), 91 (8), 87 (34), 85 (5), 84 (6), 83 (18), 82 (34), 81 (6), 78 (16), 77 (100), 74 (27), 71 (18), 69 (11), 67 (11), 59 (46), 57 (20), 56 (12), 55 (19), 51 (27), 50 (10), 45 (74), 43 (20), 42 (10), 41 (41), 39 (20)

ling constant $J_{AB} = 5.7$ Hz and by the fact that the H_D proton is shown in the spectrum as a singlet at δ 5.08 ppm. The *endo*-arrangement of the isoxazolidine proton H_E with the bridge protons H_B and H_C in XIa follows from values of the coupling constants $J_{BE} = 2.5$ Hz and $J_{BC} = 7.5$ Hz. The cycloadducts IXa (*endo*) and Xa (*exo*) represent a diastereoisomeric pair formed by cycloaddition of the nitrone Ia to *cis*-2,5-dimethoxy-1,5-dihydrofuran as it follows from interpretation of the ¹H NMR spectrum (Table II). The found *endo* : *exo* ratio is 54 : 46 and is given in Table III along with the other derivatives.


The endo-exo isomerism is an important aspect of 1,3-dipolar cycloaddition to which not much attention has been paid so far. The endo-exo nomenclature¹³ used in the present paper is applied to relative orientation of bent 1,3-dipoles, *i.e.* also nitrones *Ia* and *Ib*, with respect to the substituted double bond. The endo-exo stereospecificity is due to secondary orbital interactions or steric effects^{13,14}. In our previous papers dealing with the cycloadditions of nitrone *Ia* to furan derivatives we always detected the presence of the endo-cycloadduct *IIa* only. The steric hindrance favouring the adduct formation through the endo transition state cannot be considered in the case of furan.Therefore, better stabilization in the endo transition state can be explained by secondary overlap between the LUMO of nitrogen in 1,3-dipole and the HOMO *i.e.* π orbital of the second double bond in furan (Scheme 2). Geometry

SCHEME 2

of the transition states in cycloadditions of nitrone Ia is deduced from the found structures of the final cycloadducts and on the basis of the known E configuration of nitrone Ia which is not changed during the concerted 1,3-dipolar cycloaddition. In case of cycloadditions with 2,3-dihydro- and 2,5-dihydrofurans the second double bond is absent, the secondary orbital interactions cannot operate, and, therefore, the *endo-exo* adducts are formed at a ratio almost equal to 1 : 1.

Cycloaddition to E (trans) 2,5-dimethoxy-2,5-dihydrofuran again produces the endo diastereoisomer XIa only. Stabilization of endo-arrangement of the transition state (following from the Dreiding model) can be explained by interaction between free electron pair at oxygen atom of methoxy-group and electrophilic terminal carbon atom of 1,3-dipole-nitrone Ia (Scheme 3).

SCHEME 3

In case of 2,3-dihydrofuran and 2,5-dihydrofuran we also investigated the cycloaddition kinetics with the nitrone Ia at 40°C under conditions of pseudomonomolecular reaction using the method described in ref.⁷. According to expectation, these compounds are more reactive than furan derivatives with comparable IP value (Table IV), 2,3-dihydrofuran being only 2.21 × more reactive than 2,5-dihydrofuran.

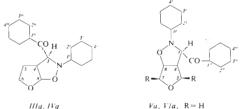
The values of chemical shifts obtained from ¹³C NMR spectra confirm the assignement of *endo*- and *exo*-stereochemistry to the prepared cycloadducts *IIIa*, *IVa*, *Va*, *VIa*, *VIIa*, *VIIIa* (Table V). In case of the adducts of 2,3-dihydrofuran pseudoaxial benzoyl group in the *endo*-derivative *IIIa* produces a γ effect on C₍₅₎ atom

TABLE IV

The endo : exo stereoselectivity ratio determined from ¹H NMR spectra of the reaction mixtures

Olefin	endo : exo	k_2 , 1 mol ⁻¹ s ⁻¹
Furan	100 : 0	
2,3-Dihydrofuran	$52:48(22:78)^a$	$3.34.10^{-4}$
2,5-Dihydrofuran	44 : 56	$1.51.10^{-4}$
cis-2,5-Diacetoxy-2,5-dihydrofuran	70:30	_
cis-2,5-Dimethoxy-2,5-dihydrofuran	54:46	-
trans-2,5-Dimethoxy-2,5-dihydrofuran	100:0	

^a For C,N-diphenylnitrone.


Collection Czechoslovak Chem. Commun. [Vol. 47] [1982]

	Chem
Table V	¹³ C NMR

prepared ^a	
derivatives	
hifts of the	
Chemical sl	
MR	

ppm assignment pm assignment ppm assignment ppm assignment pm assignment pm assignment pm assignment pm assignment pm assignment pm <th< th=""><th>assignment ppm assignment ppm assignment<th>assignment ppm assignment ppm assignment<th>вu</th><th>endo IIIa</th><th>(a</th><th>exo IVa</th><th>en</th><th>endo Va</th><th>ех</th><th>exo VIa</th><th>ш</th><th>endo VIIa</th><th>exc</th><th>exo VIIIa</th></th></th></th<>	assignment ppm assignment <th>assignment ppm assignment ppm assignment<th>вu</th><th>endo IIIa</th><th>(a</th><th>exo IVa</th><th>en</th><th>endo Va</th><th>ех</th><th>exo VIa</th><th>ш</th><th>endo VIIa</th><th>exc</th><th>exo VIIIa</th></th>	assignment ppm assignment <th>вu</th> <th>endo IIIa</th> <th>(a</th> <th>exo IVa</th> <th>en</th> <th>endo Va</th> <th>ех</th> <th>exo VIa</th> <th>ш</th> <th>endo VIIa</th> <th>exc</th> <th>exo VIIIa</th>	вu	endo IIIa	(a	exo IVa	en	endo Va	ех	exo VIa	ш	endo VIIa	exc	exo VIIIa
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mqq	assignment	mqq	assignment	bpm	assignment	mqq	assignment	mqq	assignment	bhm	assignmen
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30-90	. s	29-69	S	53-67	4	52-94	4	21.15	CH3	21.03	CH ₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.12	4	51-03	4	71.81	5	68.78	5	56.45	4	57.33	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68-04	9	69-69	9	72.86	7	72-15	7	69.68	m	71.68	3
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	73-63	e	72-85	e	75.32	ę	73-97	3	86.56	80	85.12	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	108-69	8	105-05	00	83-45	8	83-31	8	101-22	7	100.18	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	114-14	2,	118-56	2,	116.80	2,	115-75	2,	103-69	5	101·74	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	121-55	4	124.14	4,	123-35	4,	122-89	4′	114.85	2,	117-39	2,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			128-30		128-85		128-60		123-15	, 4	124-33	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	128-69	2",3",3'	128-56	2",3",3'	129-08	2",3",3'	128-86	2",3",3′	128-86	3,	128-69	з,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			129-08						129-25	2",3"	128-95	2",3"
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1" 135-44 1" 135-29 1" 135-87 1" 134-70 1" 1' 148-43 1' 148-62 1' 149-89 1' 147-68 1' C=O 194-01 C=O 196-13 C=O 195-44 C=O 168-98 OCOCH ₃ 168-75 1 169-74 C=O 193-61	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	133-36	4"	134-14	<u>*</u> 4	133-88	4"	133-79	4"	133-92	¢,	134-20	1",4"
1' 148-43 1' 148-62 1' 149-89 1' 147-68 1' C=O 194-01 C=O 196-13 C=O 195-44 C=O 168-98 OCOCH ₃ 168-75 0 169-74 C=O 193-61 194-14 C=O 193-61	1' 148-43 1' 148-62 1' 149-89 1' 147-68 1' C=O 194-01 C=O 196-13 C=O 195-44 C=O 168-98 169-74 C=O 196-13 168-75 0 169-74 C=O 193-61	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	134-79	1"	135-44	1"	135-29	1″	135-87	1"	134-70	1"		
C=0 194-01 C=0 196-13 C=0 195-44 C=0 168-98 0C0CH ₃ 168-75 1 169-74 C=0 193-61 194-14 C=0 193-61	C=0 194-01 C=0 196-13 C=0 195-44 C=0 168-98 0C0CH ₃ 168-75 1 169-74 C=0 193-61	II C=0 196·13 C=0 195·44 C=0 168·98 0C0CH ₃ 168·75 168·75 169·74 C=0 193·61	[49-34	1′	148-43	1′	148.62	1′	149-89	1′	147.68	I,		
0C0CH ₃ 168·75 (C=0 193·61	0C0CH ₃ 168-75 0 C=0 193-61	0C0CH ₃ 168-75 168-75 168-75 193-61 194-14 C=0 193-61	195-69	C==0	194-01	C=0	196.13	C=0	195-44	C=0	168.98			
C=0 193·61	C=0 193·61	169-74 194-14 C=O 193-61										ococH ₃	168-75	OCOCH ₃
C=0 193·61	C=0 193·61	194-14 C=0 193-61									169-74			
		or numbering see Scheme 4.									194-14	C=0	193-61	C==0

 $(\Delta \delta = 2.21 \text{ ppm})$ and $C_{(8)}$ atom $(\Delta \delta = 3.64 \text{ ppm})$ as compared with pseudoequatorial benzoyl group in the *exo*-derivative *IVa*. High value of chemical shift for $C_{(8)}$ atom (δ 105.05 and 108.69 ppm for *IVa* and *IIIa*, respectively), which is due to deshielding effect of two oxygen heteroatoms, confirms the regioisomerism of the 1,3-dipolar cycloaddition of nitrone *Ia* to 2,3-dihydrofuran.

 $VIIa, VIIIa, R = OCOCH_3$

SCHEME 4

In case of the monoadducts derived from 2,5-dihydrofuran the γ effect on C₍₅₎ atom in Va is observed ($\Delta \delta = 3.03$ ppm) as compared with VIa. Also the value for the α -atom (C₍₃₎) is different, $\Delta = 1.35$ ppm. In the adducts derived from 2,5diacetoxy-2,5-dihydrofuran γ effect is observed on C₍₅₎ atom ($\Delta \delta = 1.95$ ppm). An opposite effect exerts the acetoxyl group at C₍₅₎ atom by the γ effect on C₍₃₎ atom in the *exo*-adduct VIIIa as compared with the *endo*-adduct VIIa ($\Delta \delta = 2.0$ ppm). The given deshielding effects of benzoyl group in pseudoaxial arrangement agree with literature data¹⁵ for cyclic systems.

EXPERIMENTAL

The yields, uncorrected melting points, and analytical data of the compounds synthetized are given in Table I. The IR spectra were measured in the region 700 to 3 800 cm⁻¹ using a UR-20 spectrophotometer (Zeiss, Jena) in saturated chloroform solution (0.6 mm NaCl cell). The ¹H NMR spectra were measured in deuteriochloroform using a BS-487C apparatus (80 MHz, Tesla Brno), δ scale, tetramethylsilane as internal standard (Table II). The mass spectra (Table III) were measured with a MS 902S apparatus (AEI Manchester) using a direct inlet system at an electron energy of 70 eV. The UV spectra were measured with a UV VIS spectrophotometer (using Silufol plates (detection in UV₂₅₄ light). 2,3- and 2,5-Dihydrofurans were prepared according to ref.¹⁴. The column chromatography was carried out using silica gel and cyclohexane–ethyl acetate as eluent (4 : 1, 8 : 1, 2 : 1, and 6 : 1 for 2,3-, 2,5-dihydrofuran, 2,5-diacetoxy-and 2,5-dimethoxy-2,5-dihydrofuran, respectively).

Collection Czechoslovak Chem. Commun. [Vol. 47] [1982]

The cycloadditions were carried out in a sixfold excess of the dihydrofuran derivative to nitrone Ia in toluene under the following conditions: 2,3-dihydrofuran (40°C, 8 h), 2,5-dihydrofuran (40°C, 20 h), 2,5-diacetoxy-2,5-dihydrofuran (40°C, 40 h), and 2,5-dimethoxy-2,5-dihydrofuran (55°C, 30 h); with nitrone Ib 2,3-dihydrofuran (70°C, 24 h). The kinetic measurements were carried out at 40°C by the procedure given in ref.⁷.

REFERENCES

- 1. Huisgen R.: Angew. Chem. Int. Ed. Engl. 2, 565 (1963).
- 2. Joucla M., Grée D., Hamelin J.: Tetrahedron 29, 2315 (1973).
- 3. Joucla M., Hamelin J.: J. Chem. Research (S) 1978, 276.
- 4. Fišera L., Kováč J., Poliačiková J., Leško J.: Monatsh. Chem. 111, 909 (1980).
- 5. Fišera Ľ., Kováč J., Poliačiková J.: Heterocycles 12, 1005 (1979).
- 6. Fišera Ľ., Leško J., Dandárová M., Kováč J.: This Journal 45, 3546 (1980).
- 7. Fišera Ľ., Gaplovský A., Timpe H. J., Kováč J.: This Journal 46, (1981).
- Caramella P., Callerino G., Corsino Coda A., Gamba Invernizzi A., Grünanger P., Houk K. N., Marinone Albini F.: J. Org. Chem. 41, 3349 (1976).
- Romers C., Altona C., Buys H. R., Havinga E.: Topics in Stereochemistry (E. L. Eliel, N. L., Allinger, Eds), Vol. 4, p. 39. Wiley, New York 1969.
- 10. Karplus M.: J. Chem. Phys. 30, 11 (1959).
- 11. Williams D. A., Makviyannis A.: J. Heterocycl. Chem. 16, 1223 (1979).
- Jackman L. M., Sternhell S.: Applications of NMR Spectroscopy in Organic Chemistry, 2nd Ed. Pergamon Press, Oxford 1969.
- Bianchi G., Micheli C., Gandolfi R. in the book: *The Chemistry of Functional Groups*, Supplement A (S. Patai, Ed.), p. 369. Wiley, New York 1977.
- Ponomarev A. A.: Sintezi i Reakcii Furanovych Veshchestev. Saratov. University, Saratov U.S.S.R. 1960.
- Wilson N., Stothers J. B. in the book: *Topics in Stereochemistry*, Vol. 8 (E. L. Eliel, N. L. Allinger, Eds), p. 25. Wiley, New York 1974.

Translated by J. Panchartek,